Use of human vascular tissue microarrays for measurement of advanced glycation endproducts

Abstract

Advanced glycation endproducts (AGEs) are present in the vasculature and are associated with vascular disease. We determined levels of AGEs in eight distinct adult vascular tissues using tissue microarray (TMA) technology and associated these levels with clinical characteristics. Medium-to-large caliber blood vessels were harvested from 100 adult autopsies to create 17 TMAs. AGE levels were evaluated by IHC using a polyclonal anti-AGE antibody on over 700 unique blood vessels. Slides were digitally scanned, and quantitative analysis was performed using a color deconvolution image analysis technique. Medial AGE staining was strongly correlated between all eight blood vessels. In the media, AGE staining levels were significantly higher at older ages (p=0.009), in white subjects (ptextless0.001) and with longer postmortem interval (PMI; ptextless0.0001). These associations remained significant after simultaneous adjustment for age, race/ethnicity, PMI, and diabetes status. Diabetes was associated with elevated AGE levels but only after adjustment for confounding by clinical variables including race/ethnicity, hypertension, and kidney function. This extensive vascular study shows that AGE accumulation in the macrovasculature is a global process affecting atherosclerosis-prone and -resistant vessels. It also suggests ethnicity has a previously undescribed role in vascular tissue AGE levels. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.

Publication
J Histochem Cytochem
Toby C. Cornish
Toby C. Cornish
Professor of Pathology and Biomedical Informatics

Clinical informaticist, gastrointestinal pathologist, and researcher.

Related